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ON THE FRACTURE OF A PLATE CONTAINING A CRACK

P. M. Vitvitskiy and M. Ya. Leonov (L'vov)

ABSTRACT. A simplified model of a solid body (ref. 1) is
used to solve the problem of the fracture of an infinite plate
containing a crack during tension by forces perpendicular to the
direction of the crack. To determine the critical (fracture)
load, the authors obtained formula (19), which can be applied
both for ideally brittle materials, as well as for materials in
which the fracturing process is accompanied by microplastic de-
formations. Griffith's formula follows from (19) as a special
case. A consequence of formula (19) is that the strength of a
plate with a crack of wvery short length is close to that of a
defectless plate, whereas Griffith's formula in this case gives
an infinite value for the strength.

1. An infinite plate with a 2 t-long crack (see figure) is subjected to
continuous tension by forces perpendicular to the direction of the crack. We
will determine the level of the tension Oy at which the plate is destroyed.

Let us assume that the material of the
plate meets the following conditions (ref. 1):
a) the maximum normal tension does not exceed
o , . a certain magnitude 93 referred to as the

durability threshold of the material, i. e.,
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Omax % G | (1)

_ b) the relationship between the tension and
;ff.z the deformations is governed by Hooke's law
f{**‘ if the tensile stress is below Oy c) if the

R Y9N, .
i
>

o
t

YRIRRURERERY

-
-
-

tensile stress reaches a point of deformation
which meets the conditions of the linear theory of elasticity and condition (l),

cracks will appear in some places (in the area of the weaker bonds); d) the sur-
faces of such cracks are either drawn to tension 04 if the distance between

them does not exceed a certain magnitude 6 , or they do not interact at all, if
the distance is greater than éc. ¢

The magnitude 6C for ideally brittle (amorphous) materials is defined by

the following formula

6 = (2)
T a
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where T is the surface energy of the material.

The magnitude 6c can be defined experimentally in the case of many materials
whose destruction is accompanied by microplastic deformétion.

2. We know that no matter how small the load (ow) on the plate is, the

tension-deformation conditions developing near the ends of the crack are such
that condition (1) under Hooke's law is not fulfilled. Depending on the solid-
body model in use, the weak zones (fissures) developing at the ends of the crack
widen the initial crack in the plate whose surfaces are drawn to the tension

areas od (see figure); the contour of the widened crack is thus defined by the 1517

following formula

d ‘ . O, |x‘;<l.
Xy (6, £ 0)=0; ¥, (x, L 0) = | xi<h
’ v loy. [< x| <L, (3)

The length 2L of the widened crack is unknown; it must be defined in such a
way as to satisfy condition (1).

We will use M. I. Muskhelishvili's method (ref. 2) to find the solution to
the problem. We will find the functions ¢({) and ¥({) which are expressed as
follows in case of unilateral tension of the plate:

90 = g Lowl + Gy @), ‘\
(k)

1 i ‘
V)= 7 Lol i, (8)-
The holomorphic functions @O(g) and ¢O(g) of the infinity are defined by
the following formulas

9o (l) = ——l—jn—f"—do, \ (5)
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The preset function f in this case is characterized by boundary conditions

(3):
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w(g) '%[m(o)—-ll, —L <x<l;"\
f———-j Y(x, + 0dx= {0g; - lxl<I; (7)
Lo e azle(e)+1, I<x<L

PO

where w(o) are the limiting values of function

o) = :}2— k@—ré)\\ (8)

which reflects the plane z=xt+iy with the 2L-long crack on the external part of

circle y in the plane z;=ge1°‘; c=ela is the point on w; oo=ela when

Qg = arccos —é \ (9)

Substituting (6),(7) and (8) in (5) and calculating the required integrals
by the known formulas, we find functions cpo(g) and q;o(z;) which include certain

invariable items that do not affect the tension-comnected deformation conditions,
and that will hereafter be disregarded. Knowing these functions and taking ()
into account, we finally obtain
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The tension-connected deformation conditions of the plate are defined by
the following formulas (2):

Xe4 Y, =20 )+ D)

, (12)
Y, — A+@M»—4“@ﬁw®+wgﬂ,
E“, e
ke v-f;i-{_l_v)' ~l+v @ a0 " VO —vO, (12)



where E is Young's modulus, v is the Poisson coefficient, andvu and v the travel
components on the x and y axes, respectively;

o =& vo-28. (13)

Substituting (10) and (8) in (13) and (11), we find in particular
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‘ 2040 1 20 sin 2a
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Yﬂ (x ) llx[>L o + 2 (Gco n Qz —1 1 ‘arCtg cos 2070:_‘ Qz“ ' ( ll#)

where

o= %, =[—Z—‘ + \/(%)Z—T :

With |x|=L, the denominator in the other invariable of formula (14) equals
zero. The fulfillment of condition (l) therefore calls for the assumption that

o
aO=—§§ . Then from formula (9) we find the half-length of the widened crack
d
no’»
L=ZSQC§—UE-.‘> (15)

For such a value of L, the tensions at the ends of the widened crack are
continuous, i. e., Yy(L+0,0)=Yy(L-0,0)=od, whereby the normal tensions reach the

maximum magnitude P only in the area of weakened bonds (tSIXISL,y=O);

Knowing the value of L, we will define the tension in the plate on the basis
of (8),(10),(11) and (13) by the following formulas
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In particular, on the actual axis for lex|<Oo we have



(17)

3. After the substitution of (8), (10) and (15) it would be easy to use
formula (12) to define the magnitude of &=2v{+t!,+0) on which points (%1,+0) and
(it,-O) of the opposite crack surfaces will part as a result of the deformation

) 8/ 7o .
0==—————01nco&331.2 (18)

If & exceeds the critical value 60, in accordance with the adopted solid

body model, the opposite crack surfaces will not interact. That means that the
fracture in the plate will continue to increase, developing the destructive
process. Thus the critical load (0 ) represents a o_ value whereby &= 6 . We
then find from (18) that

2 nEbc \ -
o, = —;adarccos exp( 8o, ) .‘\ (19)

With 0C<<od? we find from the last formula that

(20)

With reference to brittle materials, we find from (20), by defining 6 on
the basis of formula (2), that
R VA 2ET \ (21)

that is, we obtain the known Griffith formula (ref. 3).
With 1=0, formula (21) produces infinitely high o, values. There is no
such drawback in formula (19) which leads to the conclusion that with 1~O,ocﬁcrd,

i. e., that the strength of a plate with a "zero" fracture equals the strength
of an unblemished plate. This is a trivial physical result which does not affect
the contemporary generalizations of Griffith's theory. A more complete concept
of these generalizations can be formed on the basis of G. I. Barenblatt's studies
(ref. 4).
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Inasmuch as the destructive process apparently begins with the formation
of small cracks in the area of critical concentrations of tension, the above~
mentioned theories are unsuitable for an investigation into the origin of the
fractures as they deal with infinitely high values of strength. At the same
time, it follows from formula (19) that very small cracks produce an insignif-
icant reduction in the strength of the plate.

Formulas (19) and (20) can ve applied not only to brittle bodies but also
to bodies in which the destructive process is accompanied by plastic deformations.
In this case the product ¢.6 indicates the energy used in producing two surfaces

dc
with a single area by well-developed fractures in such a body. Designating %3
8, by A, we will write formulas (19) and (20) as follows: /520
—-;E-o arccosexp | dEA
% T TeAreCosexp| — &Gé)" (22)

EA ' p
czl/gr ("c\<%)'\ (25)

The latter formula, proposed by Orowan (ref. 5), is valid when OC<<cd.

Just like (19), formula (22) holds true for any o, values even when o_ is of the

same order as cd.
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